2004.09 – 2010.03 Ph.D., Environmental Science, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences
2000.09 – 2004.07 B.Eng., Bioengineering, China Agricultural University
She has been working as Postdoctoral Research Fellow/Senior Research Associate in Hong Kong Baptist University (Department of Biology), South China Agricultural University (College of Natural Resources and Environment), University of New South Wales, Australia (School of Civil and Environmental Engineering & School of Biotechnology and Biomolecular Sciences), and Institute of Eco-environmental and Soil Sciences in Guangdong Academy of Sciences, since she was awarded her PhD in 2010.
2018-present, South China Normal University, Professor
Undergraduate Course: Environmental Microbiology, etc.
Postgraduate Course: Molecular Biology and Omics Technology, Advanced Environmental Chemistry, Research article writing, etc
9. National Natural Science Foundation of China Project (NSFC), Chemical-microbial mechanisms of arsenite oxidation associated with reduced emission of nitrous oxide in flooded paddy soil (42377239).
8. Science and Technology Projects in Guangzhou, Mechanisms of high selenium and low cadmium accumulation in grain driven by elemental cycling and uptake-transport in soil-rice system (2024A04J3991).
7. Key-Area Research and Development Program of Guangdong Province (Sub-project), Key technologies for safe production and their applications in heavy metal-contaminated agricultural lands (2019B110207002).
6. National Natural Science Foundation of China Project (NSFC), Mechanism and functional bacteria for arsenic immobilization in the presence of Fe(II) and nitrate in flooded paddy soil (41877043).
5. National Natural Science Foundation of China Project (NSFC), Extracellular electron transfer at microbial-mineral interface via outer membrane cytochromes and exudates (41471216).
4. National Natural Science Foundation of China Project (NSFC), Microbial communities in enhancing the transformation of soil organic chlorinated compounds by humic substances and the mechanisms (41101217).
3. Guangdong Special Support Plan for High-Level Young Talents of Science and Technology Innovation (2018).
2. Guangdong Natural Science Foundation for Distinguished Young Scholars, Microbial-chemical coupled mechanism for contaminant transformation driven by iron redox cycle (2017).
1. Australian Research Council (ARC), Discovery Early Career Researcher Award (DECRA), Extracellular electron transfer at the microbe-mineral interface via outer membrane cytochromes/exudates: implications to iron transformation (2015).
1. Journal Publications
[103]. Cheng K, Yin YL, Wang Y, Huang GY, Pan DD, Wang ML, Song XX, Liu TX, Li XM*. 2024. Reduction of c-type cytochromes by Fe(II)-ligand under oxic conditions: Roles of Fe(II)-heme complexation and reactive oxygen species. Chemical Geology 663, 122276. https://doi.org/10.1016/j.chemgeo.2024.122276
[102]. Yang G, Li S, Niu RM, Hu M, Huang GY, Pan DD, Yan SY, Liu TX, Li XM*, Li FB. 2024. Insights into nitrate-reducing Fe(II) oxidation by Diaphorobacter caeni LI3T through kinetic, nitrogen isotope fractionation, and genome analyses. Science of the Total Environment 912, 168720. https://doi.org/10.1016/j.scitotenv.2023.168720
[101]. Zhong RL, Pan DD, Huang GY, Yang G, Wang XN, Niu RM, Cai XX, Ding ZM, Chi WT, Wang Y, Li XM*. 2024. Colloidal fraction on pomelo peel-derived biochar plays a dual role as electron shuttle and adsorbent in controlling arsenic transformation in anoxic paddy soil. Science of the Total Environment 934, 173340. https://doi.org/10.1016/j.scitotenv.2024.173340
[100]. Zhong SX, Li XM, Fang LP, Bai JH, Gao RC, Huang Y, Huang YM, Liu YH, Liu CP, Yin HM, Liu TX, Huang F, Li FB*. 2024. Multifunctional roles of zinc in cadmium transport in soil–rice systems: Novel insights from stable isotope fractionation and gene expression. Environmental Science & Technology 58 (28), 12467–12476. https://doi.org/10.1021/acs.est.4c01851
[99]. Hu SW, Zheng LR, Zhang HY, Yang Y, Chen GJ, Meng HB, Cheng K, Guo C, Wang Y, Li XM, Liu TX*. 2024. Sequestration of labile organic matter by secondary Fe minerals from chemodenitrification: Insight into mineral protection mechanisms. Environmental Science & Technology 58 (25), 11003–11015. https://doi.org/10.1021/acs.est.3c10134
[98]. Yang Y, Liu TX, Borch T, Fang LP, Hu SW, Chi WT, Chen GJ, Cheng K, Wang Q, Li XM, Yuan X, Li FB*. 2024. Iron biogeochemical redox cycling dominantly controls cadmium availability in acidic paddy soils. Geochimica et Cosmochimica Acta 378, 186–202. https://doi.org/10.1016/j.gca.2024.06.029
[97]. Zhong SX, Yu S, Liu YH, Gao RC, Pan DD, Chen GJ, Li XM, Liu TX, Liu CS, Li FB*. 2024. Impact of flooding-drainage alternation on Fe uptake and transport in rice: Novel insights from iron isotopes. Journal of Agricultural and Food Chemistry 72 (3), 1500–1508. https://doi.org/10.1021/acs.jafc.3c07640
[96]. Hu SW, Zhang YF, Meng HB, Yang Y, Chen GJ, Wang Q, Cheng K, Guo C, Li XM, Liu TX*. 2024. Transformation and migration of Hg in a polluted alkaline paddy soil during flooding and drainage processes. Environmental Pollution 345, 123471. https://doi.org/10.1016/j.envpol.2024.123471
[95]. Huang YM, Yi JC, Li XM, Li FB*. 2024. Transcriptomics and physiological analyses reveal that sulfur alleviates mercury toxicity in rice (Oryza sativa L.). Journal of Environmental Sciences 135, 10–25. https://doi.org/10.1016/j.jes.2023.01.001
[94]. Chen GJ, Hao QQ, Zeng RJX, Kappler A, Li XM, Yue FJ, Hu SW, Yang Y, Liu FH, Li H, Qian DY, Yang BG, Sarkytkan K, Liu TX*, Li FB. 2024. Unraveling the mechanism of assimilatory nitrate reduction and methane oxidation by Methylobacter sp. YHQ through dual N-O isotope analysis and kinetic modeling. Carbon Research 3, 58. https://doi.org/10.1007/s44246-024-00143-y
[93]. Pan DD, Chen PC, Yang G, Niu RM, Bai Y, Cheng K, Huang GY, Liu TX, Li XM*, Li FB. 2023. Fe(II) oxidation shaped functional genes and bacteria involved in denitrification and dissimilatory nitrate reduction to ammonium from different paddy soils. Environmental Science & Technology 57 (50), 21156–21167. https://doi.org/10.1021/acs.est.3c06337
[92]. Huang GY, Wang XN, Pan DD, Yang G, Zhong RL, Niu RM, Xia BQ, Cheng K, Liu TX, Li XM*. 2023. Cadmium immobilization during nitrate-reducing Fe(II) oxidation by Acidovorax sp. BoFeN1: Contribution of bacterial cells and secondary minerals. Chemical Geology 639, 121729. https://doi.org/10.1016/j.chemgeo.2023.121729
[91]. Lu HS, Yang Y, Huang KY, Huang GY, Hu SW, Pan DD, Liu TX, Li XM*. 2023. Transformation kinetics of exogenous lead in an acidic soil during anoxic-oxic alteration: Important roles of phosphorus and organic matter. Environmental Pollution 335, 122271. https://doi.org/10.1016/j.envpol.2023.122271
[90]. Huang KY, Yang Y, Lu HS, Hu SW, Chen GJ, Du YH, Liu TX, Li XM*, Li FB. 2023. Transformation kinetics of exogenous nickel in a paddy soil during anoxic-oxic alteration: Roles of organic matter and iron oxides. Journal of Hazardous Materials 452, 131246. https://doi.org/10.1016/j.jhazmat.2023.131246
[89]. Feng M, Du YH, Li XM*, Li FB, Qiao JT, Chen GN, Huang YM. 2023. Insight into universality and characteristics of nitrate reduction coupled with arsenic oxidation in different paddy soils. Science of the Total Environment 866, 161342. https://doi.org/10.1016/j.scitotenv.2022.161342
[88]. Zhong SX, Fang LP, Li XM, Liu TX, Wang P, Gao RC, Chen GJ, Yin HM, Yang Y, Huang F, Li FB*. 2023. Roles of chloride and sulfate ions in controlling cadmium transport in a soil-rice system as evidenced by the Cd isotope fingerprint. Environmental Science & Technology 57 (46), 17920–17929. https://doi.org/10.1021/acs.est.3c04132
[87]. Chen DD, Cheng K, Liu TX, Chen GJ*, Kappler A, Li XM, Zeng RJX, Yang Y, Yue FJ, Hu SW, Cao F, Li FB. 2023. Novel insight into microbially mediated nitrate-reducing Fe(II) oxidation by Acidovorax sp. strain BoFeN1 using dual N-O isotope fractionation. Environmental Science & Technology 57 (33), 12546–12555. https://doi.org/10.1021/acs.est.3c02329
[86]. Hong ZB, Hu SW, Yang Y, Deng ZW, Li XM, Liu TX*, Li FB. 2023. The key roles of Fe oxyhydroxides and humic substances during the transformation of exogenous arsenic in a redox-alternating acidic paddy soil. Water Research 242, 120286. https://doi.org/10.1016/j.watres.2023.120286
[85]. Du YH, Zhou J, Chen GH, Li XM, Fang LP, Li FB, Yuan YZ, Wang XQ*, Yang Y, Dou F. 2023. Dark side of ammonium nitrogen in paddy soil with low organic matter: Stimulation of microbial As(V) reduction and As(III) transfer from soil to rice grains. Journal of Agricultural and Food Chemistry 71 (8), 3670–3680. https://doi.org/10.1021/acs.jafc.2c07477
[84]. Chi WT, Chen GJ, Hu SW, Li XM, Cheng K, Wang Q, Xia BQ, Yang Y*, Ma YB, Liu TX. 2023. A small extent of seawater intrusion significantly enhanced Cd uptake by rice in coastal paddy fields. Journal of Hazardous Materials 458, 131945. https://doi.org/10.1016/j.jhazmat.2023.131945
[83]. Zhang YF, Wang XQ, Yang Y, Huang YM, Li XM, Hu SW, Pang Y, Liu TX*, Li FB. 2023. Retention and transformation of exogenous Hg in acidic paddy soil under alternating anoxic and oxic conditions: Kinetic and mechanistic insights. Environmental Pollution 323, 121335. https://doi.org/10.1016/j.envpol.2023.121335
[82]. Zhong SX, Li XM, Li FB*, Pan DD, Liu TX, Huang YM, Wang Q, Yin HM, Huang F. 2023. Cadmium isotope fractionation and gene expression evidence for tracking sources of Cd in grains during grain filling in a soil-rice system. Science of the Total Environment 873, 162325. https://doi.org/10.1016/j.scitotenv.2023.162325
[81]. Zhong SX, Liu TX, Li XM, Yin ML, Yin HM, Tong H, Huang F, Li FB*. 2023. Cd isotope fractionation in a soil-rice system: Roles of pH and mineral transformation during Cd immobilization and migration processes. Science of the Total Environment 900, 166435. https://doi.org/10.1016/j.scitotenv.2023.166435
[80]. 钟松雄, 李晓敏, 潘丹丹, 高瑞川, 余珊, 李芳柏*. 2023. 水稻吸收转运铁的生物地球化学机制研究进展. 土壤学报 60 (5), 1339–1349. Zhong SX, Li XM, Pan DD, Gao RC, Yu S, Li FB*. 2023. The biogeochemical mechanism of uptake and transport of iron in rice: A review. Acta Pedologica Sinica 60 (5), 1339–1349. (In Chinese)
http://pedologica.issas.ac.cn/html/trxb/2023/5/trxb202306270247.htm
[79]. Huang GY, Pan DD, Wang ML, Zhong SX, Huang YM, Li FB, Li XM*, Xing BS. 2022. Regulation of iron and cadmium uptake in rice roots by iron(III) oxide nanoparticles: Insights from iron plaque formation, gene expression, and nanoparticle accumulation. Environmental Science: Nano 9 (11), 4093–4103. https://doi.org/10.1039/D2EN00487A
[78]. Pan DD, Huang GY, Yi JC, Cui JH, Liu CP, Li FB, Li XM*. 2022. Foliar application of silica nanoparticles alleviates arsenic accumulation in rice grain: Co-localization of silicon and arsenic in nodes. Environmental Science: Nano 9 (4), 1271–1281. https://doi.org/10.1039/D1EN01132D
[77]. Chen YT, Li XM*, Liu TX, Li FB*, Sun WM, Young LY, Huang WL. 2022. Metagenomic analysis of Fe(II)-oxidizing bacteria for Fe(III) mineral formation and carbon assimilation under microoxic conditions in paddy soil. Science of the Total Environment 851 Part 1, 158068. https://doi.org/10.1016/j.scitotenv.2022.158068
[76]. Zhong SX, Li XM*, Li FB, Huang YM, Liu TX, Yin HM, Qiao JT, Chen GJ, Huang F. 2022. Cadmium uptake and transport processes in rice revealed by stable isotope fractionation and Cd-related gene expression. Science of the Total Environment 806 Part 2, 150633. https://doi.org/10.1016/j.scitotenv.2021.150633
[75]. Huang YM, Li FB, Yi JC, Yan HL, He ZY, Li XM*. 2022. Transcriptomic and physio-biochemical features in rice (Oryza sativa L.) in response to mercury stress. Chemosphere 309 Part 1, 136612. https://doi.org/10.1016/j.chemosphere.2022.136612
[74]. Chi WT, Yang Y, Liu TX, Sun Y, Du YH, Qin HL, Li XM*. 2022. Effects of water salinity on cadmium availability at soil-water interface: Implication for salt water intrusion. Environmental Science and Pollution Research 29, 68892–68903. https://doi.org/10.1007/s11356-022-20606-2
[73]. Zhong SX, Li XM (Co-first author), Li FB*, Liu TX, Pan DD, Liu YH, Liu CS, Chen GJ, Gao RC. 2022. Source and strategy of iron uptake by rice grown in flooded and drained soils: Insights from Fe isotope fractionation and gene expression. Journal of Agricultural and Food Chemistry 70 (8), 2564–2573. https://doi.org/10.1021/acs.jafc.1c08034
[72]. Song XX, Wang P, Zwieten LV, Bolan N, Wang HL, Li XM, Cheng K, Yang Y, Wang ML, Liu TX*, Li FB. 2022. Towards a better understanding of the role of Fe cycling in soil for carbon stabilization and degradation. Carbon Research 1, 5. https://doi.org/10.1007/s44246-022-00008-2
[71]. Chi WT, Yang Y, Zhang K, Wang P, Du YH, Li XM, Sun Y, Liu TX*, Li FB. 2022. Seawater intrusion induced cadmium activation via altering its distribution and transformation in paddy soil. Chemosphere 307 Part 2, 135805. https://doi.org/10.1016/j.chemosphere.2022.135805
[70]. Cheng K, Li H, Yuan X, Yin YL, Chen DD, Wang Y, Li XM, Chen GJ, Li FB, Peng C, Wu YD, Liu TX*. 2022. Hematite-promoted nitrate-reducing Fe(II) oxidation by Acidovorax sp. strain BoFeN1: Roles of mineral catalysis and cell encrustation. Geobiology 20 (6), 810–822. https://doi.org/10.1111/gbi.12510
[69]. Zhong SX, Li XM (Co-first author), Li FB*, Liu TX, Huang F, Yin HM, Chen GJ, Cui JH. 2021. Water management alters cadmium isotope fractionation between shoots and nodes/leaves in a soil-rice system. Environmental Science & Technology 55 (19), 12902–12913. https://doi.org/10.1021/acs.est.0c04713
[68]. Qiao JT, Li XM*, Li FB, Zhong SX, Chen MJ. 2021. Effect of riboflavin on active bacterial communities and arsenic-respiring gene and bacteria in arsenic-contaminated paddy soil. Geoderma 382, 114706. https://doi.org/10.1016/j.geoderma.2020.114706
[67]. Pan DD, Liu CP, Yi JC, Li XM*, Li FB. 2021. Different effects of foliar application of silica sol on arsenic translocation in rice under low and high arsenite stress. Journal of Environmental Sciences 105, 22–32. https://doi.org/10.1016/j.jes.2020.12.034
[66]. Zhang XF, Liu TX, Li FB*, Li XM, Du YH, Yu HY, Wang XQ, Liu CP, Feng M, Liao B. 2021. Multiple effects of nitrate amendment on the transport, transformation and bioavailability of antimony in a paddy soil-rice plant system. Journal of Environmental Sciences 100, 90–98. https://doi.org/10.1016/j.jes.2020.07.009
[65]. Xia BQ, Yang Y, Wu YD, Li XM, Li FB, Liu TX*. 2021. Impacts of redox conditions on arsenic and antimony transformation in paddy soil: Kinetics and functional bacteria. Bulletin of Environmental Contamination and Toxicology 107, 1121–1127. https://doi.org/10.1007/s00128-021-03242-3
[64]. Chen GJ, Liu TX, Li YZ, Gao T, Huang F, Li XM, Zhong SX, Li FB*. 2021. New insight into iron biogeochemical cycling in soil-rice plant system using iron isotope fractionation. Fundamental Research 1 (3), 277–284. https://doi.org/10.1016/j.fmre.2021.04.006
[63]. Yang Y, Yuan X, Chi WT, Wang P, Hu SW, Li FB, Li XM, Liu TX*, Sun Y, Qin HL. 2021. Modelling evaluation of key cadmium transformation processes in acid paddy soil under alternating redox conditions. Chemical Geology 581, 120409. https://doi.org/10.1016/j.chemgeo.2021.120409
[62]. 钟松雄, 李晓敏, 李芳柏*. 2021. 镉同位素分馏在土壤-植物体系中的研究进展. 土壤学报 58 (4), 825–836. Zhong SX, Li XM, Li FB*. 2021. Cadmium isotopes fractionation in soil-plant systems. Acta Pedologica Sinica 58 (4), 825–836. (In Chinese) http://pedologica.issas.ac.cn/html/trxb/2021/4/trxb202006010266.htm
[61]. Li XM, Qiao JT, Li S, Haggblom MM, Li FB*, Hu M. 2020. Bacterial communities and functional genes stimulated during anaerobic arsenite oxidation and nitrate reduction in a paddy soil. Environmental Science & Technology 54 (4), 2172–2181. https://doi.org/10.1021/acs.est.9b04308
[60]. Pan DD, Yi JC, Li FB, Li XM*, Liu CP, Wu WJ, Tao TT. 2020. Dynamics of gene expression associated with arsenic uptake and transport in rice during the whole growth period. BMC Plant Biology 20 (1), 133. https://doi.org/10.1186/s12870-020-02343-1
[59]. Liu TX, Wang Y, Liu CX, Li XM, Cheng K, Wu YD, Fang LP, Li FB*, Liu CS. 2020. Conduction band of hematite can mediate cytochrome reduction by Fe(II) under dark and anoxic conditions. Environmental Science & Technology 54 (8), 4810–4819. https://doi.org/10.1021/acs.est.9b06141
[58]. Shi ZQ*, Hu SW, Lin JY, Liu TX, Li XM, Li FB. 2020. Quantifying microbially mediated kinetics of ferrihydrite transformation and arsenic reduction: Role of arsenate-reducing gene expression pattern. Environmental Science & Technology 54 (11), 6621–6631. https://doi.org/10.1021/acs.est.9b07137
[57]. Liu TX, Luo XB, Wu YD, Reinfelder JR, Yuan X, Li XM, Chen DD, Li FB*. 2020. Extracellular electron shuttling mediated by soluble c-type cytochromes produced by Shewanella oneidensis MR-1. Environmental Science & Technology 54 (17), 10577–10587. https://doi.org/10.1021/acs.est.9b06868
[56]. 李芳柏*, 徐仁扣, 谭文峰, 周顺桂, 刘同旭, 石振清, 方利平, 刘承帅, 刘芳华, 李晓敏, 冯雄汉, 吴云当. 2020. 新时代土壤化学前沿进展与展望. 土壤学报 57 (5), 1088−1104.
Li FB*, Xu RK, Tan WF, Zhou SG, Liu TX, Shi ZQ, Fang LP, Liu CS, Liu FH, Li XM, Feng XH, Wu YD. 2020. The frontier and perspectives of soil chemistry in the new era. Acta Pedologica Sinica 57 (5), 1088−1104. (In Chinese) http://pedologica.issas.ac.cn/trxb/ch/reader/view_abstract.aspx?file_no=trxb202003080103&flag=1
[55]. Qiao JT, Li XM (Co-first author), Li FB*, Liu TX, Young LY, Huang WL, Sun K, Tong H, Hu M. 2019. Humic substances facilitate arsenic reduction and release in flooded paddy soil. Environmental Science & Technology 53 (9), 5034–5042. https://doi.org/10.1021/acs.est.8b06333
[54]. Li XM, Mou S, Chen YT, Liu TX, Dong J, Li FB*. 2019. Microaerobic Fe(II) oxidation coupled to carbon assimilation processes driven by microbes from paddy soil. Science China-Earth Sciences 62 (11), 1719–1729. https://doi.org/10.1007/s11430-018-9329-3
[53]. Li XM, Liu L, Wu YD, Liu TX*. 2019. Determination of the redox potentials of solution and solid surface of Fe(II) associated with iron oxyhydroxides. ACS Earth and Space Chemistry 3 (5), 711–717. https://doi.org/10.1021/acsearthspacechem.9b00001
[52]. Wang Y, Yuan X, Li XM, Li FB, Liu TX*. 2019. Ligand mediated reduction of c-type cytochromes by Fe(II): Kinetic and mechanistic insights. Chemical Geology 513, 23−31. https://doi.org/10.1016/j.chemgeo.2019.03.006
[51]. Liu TX, Chen DD, Li XM, Li FB*. 2019. Microbially mediated coupling of nitrate reduction and Fe(II) oxidation under anoxic conditions. FEMS Microbiology Ecology 95 (4), fiz030. https://doi.org/10.1093/femsec/fiz030
[50]. Liu TX, Chen DD, Luo XB, Li XM, Li FB*. 2019. Microbially mediated nitrate-reducing Fe(II) oxidation: Quantification of chemodenitrification and biological reactions. Geochimica et Cosmochimica Acta 256, 97–115. https://doi.org/10.1016/j.gca.2018.06.040
[49]. Luo XB, Wu YD, Liu TX*, Li FB, Li XM, Chen DD, Wang Y. 2019. Quantifying redox dynamics of c-type cytochromes in a living cell suspension of dissimilatory metal-reducing bacteria. Analytical Sciences 35 (3), 315−321. https://doi.org/10.2116/analsci.18P394
[48]. Qiao JT, Li XM (Co-first author), Hu M, Li FB*, Young LY, Sun WM, Huang WL, Cui JH. 2018. Transcriptional activity of arsenic-reducing bacteria and genes regulated by lactate and biochar during arsenic transformation in flooded paddy soil. Environmental Science & Technology 52 (1), 61−70. https://doi.org/10.1021/acs.est.7b03771
[47]. Li S, Li XM*, Li FB. 2018. Fe(II) oxidation and nitrate reduction by a denitrifying bacterium, Pseudomonas stutzeri LS-2, isolated from paddy soil. Journal of Soils and Sediments 18, 1668–1678. https://doi.org/10.1007/s11368-017-1883-1
[46]. Qiao JT, Li XM, Li FB*. 2018. Roles of different active metal-reducing bacteria in arsenic release from arsenic-contaminated paddy soil amended with biochar. Journal of Hazardous Materials 344, 958–967. https://doi.org/10.1016/j.jhazmat.2017.11.025
[45]. Xiao W, Jones AM, Li XM, Collins RN, Waite TD*. 2018. Effect of Shewanella oneidensis on the kinetics of Fe(II)-catalyzed transformation of ferrihydrite to crystalline iron oxides. Environmental Science & Technology 52 (1), 114–123. https://doi.org/10.1021/acs.est.7b05098
[44]. Chen DD, Liu TX, Li XM, Li FB*, Luo XB, Wu YD, Wang Y. 2018. Biological and chemical processes of microbially mediated nitrate-reducing Fe(II) oxidation by Pseudogulbenkiania sp. strain 2002. Chemical Geology 476, 59–69. https://doi.org/10.1016/j.chemgeo.2017.11.004
[43]. Han R, Liu TX, Li FB, Li XM, Chen DD, Wu YD. 2018. Dependence of secondary mineral formation on Fe(II) production from ferrihydrite reduction by Shewanella oneidensis MR-1. ACS Earth and Space Chemistry 2 (4), 399–409. https://doi.org/10.1021/acsearthspacechem.7b00132
[42]. Han R, Li XM (Co-first author), Wu YD, Li FB, Liu TX*. 2017. In situ spectral kinetics of quinone reduction by c-type cytochromes in intact Shewanella oneidensis MR-1 cells. Colloids and Surfaces A: Physicochemical and Engineering Aspects 520, 505–513. https://doi.org/10.1016/j.colsurfa.2017.02.023
[41]. Chen YT, Li XM, Liu TX, Li FB*. 2017. Microaerobic iron oxidation and carbon assimilation and associated microbial community in paddy soil. Acta Geochimica 36 (3), 502–505. https://doi.org/10.1007/s11631-017-0219-6
[40]. Liu TX, Wang Y, Li XM, Li FB*. 2017. Redox dynamics and equilibria of c-type cytochromes in the presence of Fe(II) under anoxic conditions: Insights into enzymatic iron oxidation. Chemical Geology 468, 97–104. https://doi.org/10.1016/j.chemgeo.2017.08.019
[39]. Luo XB, Wu YD, Li XM, Chen DD, Wang Y, Li FB, Liu TX*. 2017. The in situ spectral methods for examining redox status of c-type cytochromes in metal-reducing/oxidizing bacteria. Acta Geochimica 36 (3), 544–547. https://doi.org/10.1007/s11631-017-0232-9
[38]. Liu TX, Wu YD, Li FB*, Li XM, Luo XB. 2017. Rapid redox processes of c-type cytochromes in a living cell suspension of Shewanella oneidensis MR-1. ChemistrySelect 2, 1008–1012. https://doi.org/10.1002/slct.201602021
[37]. Li XM, Zhang W, Liu TX, Chen LX, Chen PC, Li FB*. 2016. Changes in the composition and diversity of microbial communities during anaerobic nitrate reduction and Fe(II) oxidation at circumneutral pH in paddy soil. Soil Biology & Biochemistry 94, 70–79. https://doi.org/10.1016/j.soilbio.2015.11.013
[36]. Liu TX, Li XM, Yuan X, Wang Y, Li FB*. 2016. Enhanced visible-light photocatalytic activity of a TiO2 hydrosol assisted by H2O2: Surface complexation and kinetic modeling. Journal of Molecular Catalysis A: Chemical 414, 122–129. https://doi.org/10.1016/j.molcata.2016.01.011
[35]. Liu TX, Li XM, Li FB*, Han R, Wu YD, Yuan X, Wang Y. 2016. In situ spectral kinetics of Cr(VI) reduction by c-type cytochromes in a suspension of living Shewanella putrefaciens 200. Scientific Reports 6, 29592. https://doi.org/10.1038/srep29592
[34]. Beckmann S*, Welte C, Li XM, Oo YM, Kroeninger L, Heo Y, Zhang M, Ribeiro D, Lee M, Bhadbhade M, Marjo CE, Seidel J, Deppenmeier U, Manefield M*. 2016. Novel phenazine crystals enable direct electron transfer to methanogens in anaerobic digestion by redox potential modulation. Energy & Environmental Science 9, 644–655. https://doi.org/10.1039/C5EE03085D
[33]. Han R, Li FB, Liu TX*, Li XM, Wu YD, Wang Y, Chen DD. 2016. Effects of incubation conditions on Cr(VI) reduction by c-type cytochromes in intact Shewanella oneidensis MR-1 cells. Frontiers in Microbiology 7, 746. https://doi.org/10.3389/fmicb.2016.00746
[32]. Li XM, Liu TX, Wang K, Waite TD*. 2015. Light-induced extracellular electron transport by the marine raphidophyte Chattonella marina. Environmental Science & Technology 49, 1392–1399. https://doi.org/10.1021/es503511m
[31]. Li XM, Lin Z, Luo CL, Bai J, Sun YT, Li YT*. 2015. Enhanced microbial degradation of pentachlorophenol from soil in the presence of earthworms: Evidence of functional bacteria using DNA-stable isotope probing. Soil Biology & Biochemistry 81, 168–177. https://doi.org/10.1016/j.soilbio.2014.11.011
[30]. Li XM, Liu TX*, Liu L, Li FB*. 2014. Dependence of the electron transfer capacity on the kinetics of quinone-mediated Fe(III) reduction by two iron/humic reducing bacteria. RSC Advances 4, 2284–2290. https://doi.org/10.1039/C3RA45458D
[29]. Liu TX, Li XM (Co-first author), Zhang W, Hu M, Li FB*. 2014. Fe(III) oxides accelerate microbial nitrate reduction and electricity generation by Klebsiella pneumoniae L17. Journal of Colloid and Interface Science 423, 25–32. https://doi.org/10.1016/j.jcis.2014.02.026
[28]. Liu TX, Li XM, Waite TD*. 2014. Depassivation of aged Fe0 by divalent cations: Correlation between contaminant degradation and surface complexation constants. Environmental Science & Technology 48, 14564–14571. https://doi.org/10.1021/es503777a
[27]. Zhang W, Li XM, Liu TX*, Li FB*, Shen WJ. 2014. Competitive reduction of nitrate and iron oxides by Shewanella putrefaciens 200 under anoxic conditions. Colloids and Surfaces A: Physicochemical and Engineering Aspects 445, 97–104. https://doi.org/10.1016/j.colsurfa.2014.01.023
[26]. Liu TX*, Li XM, Li FB, Tao L, Liu H*. 2014. Effects of Al content and synthesis temperature on Al-substituted iron oxides: Crystal properties and Fe(III) bioaccessibility. Soil Science 179 (10-11), 468–475. https://journals.lww.com/soilsci/Abstract/2014/10000/Effects_of_Al_Content_and_Synthesis_Temperature_on.4.aspx
[25]. Wu YD, Liu TX*, Li XM, Li FB*. 2014. Exogenous electron shuttle-mediated extracellular electron transfer of Shewanella putrefaciens 200: Electrochemical parameters and thermodynamics. Environmental Science & Technology 48, 9306−9314. https://doi.org/10.1021/es5017312
[24]. Liu TX, Zhang W, Li XM, Li FB*, Shen WJ. 2014. Kinetics of competitive reduction of nitrate and iron oxides by Aeromonas hydrophila HS01. Soil Science Society of America Journal 78, 1903−1912. https://doi.org/10.2136/sssaj2014.04.0164
[23]. Chen MJ, Liu CS, Li XM, Huang WL, Li FB*. 2014. Iron reduction coupled to reductive dechlorination in red soil: a review. Soil Science 179 (10-11), 457–467. https://journals.lww.com/soilsci/Abstract/2014/10000/Iron_Reduction_Coupled_to_Reductive_Dechlorination.3.aspx
[22]. Li XM, Liu L, Liu TX*, Yuan T, Zhang W, Li FB*, Zhou SG, Li YT. 2013. Electron transfer capacity dependence of quinone-mediated Fe(III) reduction and current generation by Klebsiella pneumoniae L17. Chemosphere 92, 218–224. https://doi.org/10.1016/j.chemosphere.2013.01.098
[21]. Li XM, Cheng KY, Wong JWC*. 2013. Bioelectricity production from food waste leachate using microbial fuel cells: Effect of NaCl and pH. Bioresource Technology 149, 452–458. https://doi.org/10.1016/j.biortech.2013.09.037
[20]. Li XM, Cheng KY, Selvam A, Wong JWC*. 2013. Bioelectricity production from acidic food waste leachate using microbial fuel cells: Effect of microbial inocula. Process Biochemistry 48, 283–288. https://doi.org/10.1016/j.procbio.2012.10.001
[19]. Liu TX, Li XM, Waite TD*. 2013. Depassivation of aged Fe0 by ferrous ions: Implications to contaminant degradation. Environmental Science & Technology 47, 13712–13720. https://doi.org/10.1021/es403709v
[18]. Liu TX, Li XM, Waite TD*. 2013. Depassivation of aged Fe0 by inorganic salts: Implications to contaminant degradation in seawater. Environmental Science & Technology 47, 7350–7356. https://doi.org/10.1021/es400362w
[17]. Li XM, Liu TX, Zhang NM, Ren G, Li FB*, Li YT. 2012. Effect of Cr(VI) on Fe(III) reduction in three paddy soils from the Hani terrace field at high altitude. Applied Clay Science 64, 53–60. https://doi.org/10.1016/j.clay.2012.02.013
[16]. Li XM, Liu TX*, Li FB*, Zhang W, Zhou SG, Li YT. 2012. Reduction of structural Fe(III) in oxyhydroxides by Shewanella decolorationis S12 and characterization of the surface properties of iron minerals. Journal of Soils and Sediments 12, 217–227. https://doi.org/10.1007/s11368-011-0433-5
[15]. Lin Z, Li XM, Li YT*, Huang DY, Dong J, Li FB*. 2012. Enhancement effect of two ecological earthworm species (Eisenia foetida and Amynthas robustus E. Perrier) on removal and degradation processes of soil DDT. Journal of Environmental Monitoring14, 1551–1558. https://doi.org/10.1039/C2EM30160A
[14]. Zhang W, Li XM, Liu TX*, Li FB*. 2012. Enhanced nitrate reduction and current generation by Bacillus sp. in the presence of iron oxides. Journal of Soils and Sediments 12, 354–365. https://doi.org/10.1007/s11368-011-0460-2
[13]. Cao F, Liu TX*, Wu CY, Li FB*, Li XM, Yu HY, Tong H, Chen MJ. 2012. Enhanced biotransformation of DDTs by an iron- and humic-reducing bacteria Aeromonas hydrophila HS01 upon addition of goethite and anthraquinone-2,6-disulphonic disodium salt (AQDS). Journal of Agricultural and Food Chemistry 60, 11238–11244. https://doi.org/10.1021/jf303610w
[12]. Liu TX, Li XM, Li FB*, Zhang W, Chen MJ, Zhou SG. 2011. Reduction of iron oxides by Klebsiella pneumoniae L17: Kinetics and surface properties. Colloids and Surfaces A-Physicochemical and Engineering Aspects 379, 143–150. https://doi.org/10.1016/j.colsurfa.2010.11.061
[11]. Li FB*, Li XM, Zhou SG, Zhuang L, Cao F, Huang DY, Xu W, Liu TX, Feng CH. 2010. Enhanced reductive dechlorination of DDT in an anaerobic system of dissimilatory iron-reducing bacteria and iron oxide. Environmental Pollution 158, 1733–1740. https://doi.org/10.1016/j.envpol.2009.11.020
[10]. Wu CY, Zhuang L, Zhou SG*, Li FB*, Li XM. 2010. Fe(III)-enhanced anaerobic transformation of 2,4-dichlorophenoxyacetic acid by an iron-reducing bacterium Comamonas Koreensis CY01. FEMS Microbiology Ecology 71, 106–113. https://doi.org/10.1111/j.1574-6941.2009.00796.x
[9]. Cao F, Li FB*, Liu TX, Huang DY, Wu CY, Feng CH, Li XM. 2010. Effect of Aeromonas hydrophila on reductive dechlorination of DDTs by zero-valent iron. Journal of Agricultural and Food Chemistry 58, 12366–12372. https://doi.org/10.1021/jf102902f
[8]. Li XM, Zhou SG, Li FB*, Wu CY, Zhuang L, Xu W, Liu L. 2009. Fe(III) oxide reduction and carbon tetrachloride dechlorination by a newly isolated Klebsiella pneumoniae strain L17. Journal of Applied Microbiology 106, 130–139. https://doi.org/10.1111/j.1365-2672.2008.03985.x
[7]. Li XM, Li YT, Li FB*, Zhou SG*, Feng CH, Liu TX. 2009. Interactively interfacial reaction of iron-reducing bacterium and goethite for reductive dechlorination of chlorinated organic compounds. Chinese Science Bulletin 54, 2800–2804. https://doi.org/10.1007/s11434-009-0475-x
[6]. Wang XG, Liu CS, Li XM, Li FB*, Zhou SG. 2008. Photodegradation of 2-mercaptobenzothiazole in the γ-Fe2O3/oxalate suspension under UVA light irradiation. Journal of Hazardous Materials 153, 426–433. https://doi.org/10.1016/j.jhazmat.2007.08.072
[5]. Li FB, Li XZ*, Li XM, Liu TX, Dong J. 2007. Heterogeneous photodegradation of bisphenol A with iron oxides and oxalate in aqueous solution. Journal of Colloid and Interface Science 311, 481–490. https://doi.org/10.1016/j.jcis.2007.03.067
[4]. Li FB, Li XZ*, Liu CS, Li XM, Liu TX. 2007. Effect of oxalate on photodegradation of bisphenol A at the Interface of different iron oxides. Industrial & Engineering Chemistry Research 46, 781–787. https://doi.org/10.1021/ie0612820
[3]. Liu CS, Li FB*, Li XM, Zhang G, Kuang YQ. 2006. The effect of iron oxides and oxalate on the photodegradation of 2-mercaptobenzothiazole. Journal of Molecular Catalysis A-Chemical 252, 40–48. https://doi.org/10.1016/j.molcata.2006.02.036
[2]. Lei J, Liu CS, Li FB*, Li XM, Zhou SG, Liu TX, Gu MH, Wu QT. 2006. Photodegradation of orange I in the heterogeneous iron oxide-oxalate complex system under UVA irradiation. Journal of Hazardous Materials 137, 1016–1024. https://doi.org/10.1016/j.jhazmat.2006.03.028
[1]. Dong J, Li FB*, Lan CY, Liu CS, Li XM, Luan TG. 2006. Dependence of bisphenol A photodegradation on the initial concentration of oxalate in the lepidocrocite-oxalate complex system. Journal of Environmental Sciences-China 18, 777–782. http://d.wanfangdata.com.cn/periodical/jes-e200604026
2. Book chapters
[3]. Cheema S, Zhang M, Labine-Romain M, Lal B, Lavania M, Lee M, Li XM, Lauro FM, Beckmann S, Manefield M. Neutral Red: The Synthetic Phenazine Full of Electrochemical Surprises. In: Wandelt K. (Editor-in-Chiefs) Encyclopedia of Interfacial Chemistry - Surface Science and Electrochemistry (1st Edition). Reference Module in Chemistry, Molecular Sciences and Chemical Engineering, 2018. pp 382–391. Elsevier (Print ISBN: 9780128097397, online ISBN: 9780128098943, DOI: 10.1016/B978-0-12-409547-2.14291-X)
[2]. Li XM, Liu L, Liu TX, Yuan T, Zhang W, Li FB, Zhou SG, Li YT. Effects of synthetic quinones as electron shuttles on geothite reduction and current generation by Klebsiella pneumoniae L17. In: Xu JM, Wu JJ, Xu Y (eds). Functions of Natural Organic Matter in Changing Environment. Part I, 2013. pp 25–29. Springer Netherlands. (Print ISBN: 978-94-007-5633-5, Online ISBN: 978-94-007-5634-2, DOI: 10.1007/978-94-007-5634-2_5)
[1]. Li FB, Zhou SG, Li XM, Wu CY, Tao L. Microbial and abiotic interactions between transformation of reducible pollutants and Fe(II)/(III) cycles. In: Xu JM, Huang PM (eds). Molecular Environmental Soil Science at the Interfaces in the Earth’s Critical Zone. Session 3, 2010. pp 190–192. Springer Berlin Heidelberg. (Print ISBN: 978-3-642-05296-5, Online ISBN: 978-3-642-05297-2, DOI: 10.1007/978-3-642-05297-2_57)
3. Awards
[4]. 2019, The First Award of Science and Technology in Guangdong, China, Rank 08.
[3]. 2017, Guangdong Special Support Plan for High-Level Young Talents of Science and Technology Innovation, Rank 01.
[2]. 2014, Australian Research Council, Discovery Early Career Researcher Award, Rank 01.
[1]. 2005, The First Award of Science and Technology in Guangdong, China, Rank 13.