主要研究方向为土地利用/覆盖与变化遥感监测(Land Use and Land Cover Change Based on Remote Sensing Imagery)、城市不透水面高光谱遥感提取(Urban Impervious Surface Area Extraction Using Hyperspectral Remote Sensing Data)、西藏生态安全及监测。在土地利用变化、城市扩展、城市经济、城市演变、城市内涝、城市化进程、生态监测等方面做出了大量的研究成果。近年来共发表学术论文近百篇,在国际知名遥感和GIS学术期刊上发表SCI论文50篇,EI论文10篇,他引率达900多次。
自2006年以来,课题组致力于土地利用变化遥感监测以及城市不透水面研究工作,在以下方面做出了一些有意义的探索:1)发现了手动端元选取优于PPI选取这一现象(2007,遥感技术应用);2)较早地利用LSMA方法提取大范围城市不透水面(2012,Sensors);3)利用不透面数据成功地改进和简化了传统的水文SCS-CN模型(2013,Remote Sensing);4)基于不透水面视角审视了广州城市内部扩张问题(2014,JFAE;2015,JARS:);5)评价和改进了多端元混解模型MESMA,提出了MESMA-SASD模型,优化了模型的提取精度(2014 JAG);6)发展了遥感指数在不透水面提取精度提升中的应用(2015,CJRS);7)利用不透水面对LUR模型进行了改进,反演了PM2.5的空间浓度(2018,Geo-Spatial Information Science);8)基于城市不透水面构建了生态评价模型并对珠三角生态进行了分级(2016,EMAS);9)讨论了城市不透面尺度效应对提取精度的影响(2019,JSTARS); 10)探讨了不同尺度遥感数据提取不透水面的精度差异(地球信息科学学报,2019)。同时,我们还完成了珠三角和粤港澳大湾区的土地利用和生态遥感监测工作,得到了广泛的关注(2007,Sensors;2007,EMAS;2009,IJGIS;2018,热带地理;2018,应用生态学报)。
近年来,课题组以西藏为研究区域,在西藏生态环境变化、西藏人文环境演变、西藏地表参数提取等方面开展了卓有成效的工作。课题组构建了西藏地区生态系统服务评价指标和评价体系,形成了西藏湿地和西藏地质滑坡深度学习算法,同时完成了西藏地表参数人类活动影响测算工作,课题组同时开展了西藏生态环境和农业环境的长时间序列演化研究工作,在长时间序列模型构建和农业物候等方面已经获得有价值的科学发现。
课题组自2022年以来开展了大量的西藏唐卡定量研究工作,主要包括基于高光谱信息的唐卡年代谱系研究、唐卡佛像与世俗人像的对照研究、唐卡高光谱融合研究以及唐卡组分混合混解研究。三年来,课题组就唐卡研究发表了三篇专业顶级期刊论文,开拓了高光谱遥感在人文社科研究的新领域。
2021年地理信息科技进步二等奖,城市不透水面高精度遥感监测与应用,中国地理信息产业协会
2023年获广东省科技进步奖二等奖(城市不透水面遥感高精度提取关键技术与应用),广东省人民政府
Rui Wen, Fenglei Fan*,2024. Quantifying Pigment Features of Thangka Five Buddhas Using Hyperspectral Imaging.Journal of Cultural Heritage,2024,8
Sai Wang, Fenglei Fan*,2024 "STINet: Vegetation Changes Reconstruction Through a Transformer-Based Spatiotemporal Fusion Approach in Remote Sensing," . IEEE Transactions on Geoscience and Remote Sensing, 62(1-16), doi: 10.1109/TGRS.2024.3443258
Zhuoling Lin, Yaduo Zhang, Xiaoliang Liang, Guangqing Huang, Fenglei Fan*, Xiaoling Yin, Zhihao Chen, 2024. Spatial distribution of rare earth elements and their impact factors in an area with a high abundance of regolith-hosted deposits, Chemosphere, 352,2024,141374, https://doi.org/10.1016/ j.chemosphere. 2024.141374.
Yudan Yang, Fenglei Fan*,2023.Land surface phenology and its response to climate change in the Guangdong-Hong Kong-Macao Greater Bay Area during 2001–2020,Ecological Indicators,
154,2023,110728,https://doi.org/10.1016/j.ecolind.2023.110728.
Yudan Yang, Fenglei Fan*. 2023. Ancient thangka Buddha face recognition based on the Dlib machine learning library and comparison with secular aesthetics. Herit Sci 11, 137 (2023). https://doi.org/10.1186/ s40494-023-00983-8
Sai Wang,
Fenglei Fan* 2023.Thangka Hyperspectral Image Super-Resolution Based on a Spatial-Spectral Integration Network. Remote Sensing,15(14)3603.
https://doi.org/10.3390/rs15143603
Sisi Wang, Xin Tan, Fenglei Fan*. 2023. Ecological Risk Assessment and Impact Factor Analysis of the Qinghai–Tibetan Plateau. Remote Sensing, 14, 4726. https://doi.org /10. 3390/rs14194726
Sisi Wang, Xin Tan, Fenglei Fan*.2023. Changes in Impervious Surfaces in Lhasa City, a Historical City on the Qinghai–Tibet Plateau. Sustainability 2023, 15, 5510. https://doi. org/ 10.3390/su15065510
Linlin Wu, Fenglei Fan*.2022. Multi-criteria framework for identifying the trade-offs and synergies relationship of ecosystem services based on ecosystem services bundles. Eco logical Indicators. https://doi.org/10.1016/ j.ecolind.2022.109453
Feng, Shanshan, Fenglei Fan*. 2022. Developing an Enhanced Ecological Evaluation Index (EEEI) Based on Remotely Sensed Data and Assessing Spatiotemporal Ecological Quality in Guangdong–Hong Kong–Macau Greater Bay Area, China. Remote Sensing 14, no. 12: 2852. https://doi.org/10.3390/rs14122852
Chuncheng Song, Caige Sun, Jianhui Xu, Fenglei Fan,2022. Establishing coordinated development index of urbanization based on multi-source data: A case study of Guang dong-Hong Kong-Macao Greater Bay Area, China. Ecological Indicators, https://doi.org /10.1016/j.ecolind.2022.109030.
Linlin Wu, Fenglei Fan*, 2022, Assessment of Ecosystem Services in New Perspective: A Comprehensive Ecosystem Service Index (CESI) as a Proxy to Integrate Multiple Eco system Services. Ecological Indicators, https://doi.org/10.1016/j.ecolind.2022.108800
Defang Liu, Junjie Li, Fenglei Fan*, 2022, Recognition of landslide triggers in southeast Tibetan (China) using a novel lightweight network. Environmental Earth Sciences, http s://doi.org/10.1007/s12665-022-10356-2
Shanshan Fenglei; Fenglei Fan*. 2021. Impervious surface extraction based on different methods from multiple spatial resolution images: a comprehensive comparison. Internati onal Journal of Digital Earth. https://doi.org/10.1080/17538947.2021.1936227
Sai, Wang; Fenglei Fan*; 2021. Analysis of the Response of Long-Term Vegetation Dynamics to Climate Variability Using the Pruned Exact Linear Time (PELT) Method and Disturbance Lag Model (DLM) Based on Remote Sensing Data: A Case Study in Guang dong Province (China). Remote Sensing, 13, no. 10:1873. https://doi.org/ 10.3390/rs131 01873
Peng, Ting; Sun, Caige; Feng, Shanshan; Zhang, Yongdong; Fan, Fenglei. 2021. Temp oral and Spatial Variation of Anthropogenic Heat in the Central Urban Area: A Case Stu dy of Guangzhou, China. ISPRS Int. J. Geo-Inf. 10, no. 3: 160.https://doi.org/10.3390/ijg i10030160
Linlin Wu; Caige Sun*; Fenglei Fan; 2021. Estimating the Characteristic Spatiotemporal Variation in Habitat Quality Using the InVEST Model - A Case Study from Guangdong–Hong Kong–Macao Greater Bay Area. Remote Sensing, 2021, 13(5). https://doi.org/ 10.3390/rs13051008 (高被引论文)
Defang Liu*; Junjie Li; Fenglei Fan; 2021. Classification of landslides on the south eastern Tibet Plateau based on transfer learning and limited labelled datasets. Remote Sensing Letters, 12(3): 286-295. https://doi.org/10.1080/2150704X.2021. 1890263
Sun, Caige; Zhang, Shengyong*; Song, Chuncheng; Xu, jianhui; Fan, Fenglei; 2021. Investigation of Dynamic Coupling Coordination between Urbanization and the Eco-Environment-A Case Study in the Pearl River Delta Area. Land, 2021, 10(2). https:// doi.org/10.3390/land10020190
Shanshan Feng; Fenglei Fan*; 2021. Analyzing the Effect of the Spectral Interference of Mixed Pixels Using Hyperspectral Imagery. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14(14): 1434-1446. https://doi.org/10. 1109/ JSTARS.2020.3045712
Caige Sun; Hao Chen; Fenglei Fan*; 2020. Improving Accuracy of Impervious Surface Extraction Based on a Threshold Hierarchical Method (THM). Applied Sciences-Basel, 2020, 10(23). https://doi.org/10.3390/app10238409
Shanshan Feng; Fenglei Fan*; 2019. A hierarchical extraction method of impervious surface based on NDVI thresholding integrated with multispectral and high-resolution remote sensing imageries. IEEE Journal of Selected Topics in Applied Earth Observa tions and Remote Sensing, https://doi.org/10.1109/JSTARS.2019.2909129
Fenglei Fan *; Runping Liu; 2018. Exploration of spatial and temporal characteristics of PM2.5 concentration in Guangzhou, China using wavelet analysis and modified land use regression model. Geo-spatial Information Science, 21:4, 311-321, https://doi.org/10. 1080/10095020.2018.1523341
Zhang, Jinqu,Zhu, Yunqiang,Fan, Fenglei*; 2016. Mapping and evaluation of landscape ecological status using geographic indices extracted from remote sensing imagery of the Pearl River Delta, China, between 1998 and 2008. Environmental Earth Sciences, 2016.2.01, 75(4)https://doi.org/10.1007/s12665-015-5158-0
Fenglei Fan, Wei Fan, Qihao Weng. 2015. Improving Urban Impervious Surface Mappin g by Linear Spectral Mixture Analysis and Using Spectral Indices. Canadian Journal of Remote Sensing. 41,1-10. https://doi.org/10.1080/07038992.2015.1112730
Fenglei Fan*, Yingbin Deng. 2014. Enhancing Endmember Selection in Multiple Endmember Spectral Mixture Analysis (MESMA) for Urban Impervious Surface Area Mapping Using Spectral Angle and Spectral Distance Parameters. International Journal of Applied Earth Observation and Geoinformation, 33:290-301. https://doi.org/10.1016 /j.jag.2014.06.011
Fenglei Fan*, Wei Fan. 2014. Understanding Spatial-temporal Urban Expansion Pattern (1990- 2009) Using Impervious Surface Data and Landscape Indexes: A Case Study in Guangzhou (China). Journal of Applied Remote Sensing, 8, 083609:1-15.https://doi.org /10.1117/1.JRS.8.083609
Fenglei Fan, Yingbin Deng, Xuefei Hu, Qihao Weng*. 2013. Estimating Composite Curv e Number Using an Improved SCS-CN Method with Remotely Sensed Variables in Gua ngzhou, China. Remote Sensing, 5(3), 1425-1438. https://doi.org/10.3390/rs5031425
Fenglei Fan, Yingbin Deng, Yunqiang Zhu*.2013. Extracting impervious surface area and discussing urban expansion of Guangzhou (1990-2003) based on V-I-S model by using linear spectral mixture analysis method. Journal of Food, Agriculture & Environme nt, 11(2), 925-929.
Yingbin Deng, Fenglei Fan*, Renrong Chen. 2012. Extracting and analyzing the imper vious surface by using landsat TM/ETM+ imagery based on spectral un-mixing method from 1998 to 2008 in Pearl River Delta of China. Sensors, 12,1846-1862. https://doi.org/ 10.3390/s120201846
Fenglei Fan, Yunpeng Wang*, Maohui Qiu, Zhishi Wang. 2009. Evaluating the temporal and spatial urban expansion patterns of Guangzhou from 1979 to 2003 by remote sensin g and GIS methods. International Journal of Geographical Information Science, 23(11), 1371-1388. https://doi.org/10.1080/13658810802443432
Fenglei Fan, Yunpeng Wang*, Zhishi Wang. 2008. Temporal and spatial change detect ing (1998-2003) and predicting of land use and land cover in core corridor of Pearl River Delta (China) by using TM and ETM+ images. Environmental Monitoring and Assessme nt, 137, 127-147. https://doi.org/10.1007/s10661-007-9734-y
Fenglei Fan, Qihao Weng, Yunpeng Wang*. 2007. Land Use and Land Cover Change in Guangzhou, China, from 1998 to 2003, Based on landsat TM/ETM+ Imagery. Sensors, 7, 1323-1342. https://doi.org/10.3390/s7071323
Runping Liu, Fenglei Fan*. 2014. Mass concentration variations characteristics of PM10 and PM2.5 in Guangzhou (China). In proceeding of: 2014 Third International Workshop on Earth Observation and Remote Sensing Application.
Wei Fan, Runping Liu, Fenglei Fan*. 2014. Spatiotemporal Change Analysis of Urban Land Surface Component Based on V-I-S Model --A case study in Guangzhou. In proceeding of: 2014 Third International Workshop on Earth Observation and Remote Sensing Application.
Fenglei Fan, Maohui Qiu, Yueliang Ma*, Wei Fan. 2012. Monitoring and analyzing water pollution of the Pearl River in Guangzhou section by using remote sensing images and field acquisition data. AISS: Advances in information science and service science. 4(8), 67-75.
Fenglei Fan, Caige Sun, Zongnuan Chen, Kaiwen Zhong, Yunpeng Wang. 2011. Monit oring the land use change and its conversion mechanism of economic core corridor of Pearl River Delta based on Remote Sensing data in recent years. JDCTA: International Journal of Digital Content Technology and its Applications,15 (10), 262-265.
Fenglei Fan, Dianguo Zhang. 2010. Study of AgI real time seeding index in cold strato cumulus. Journal of computational information system, 6(8), 2501-2510.
Fenglei Fan.2008.Digital Change Detection by Post-Classification comparison of RS Da ta in land Use of Guangzhou. Journal of Information and Computational Science. 5(3), 1061-1067.
Fenglei Fan, Yunpeng Wang. 2005. Farmland loss of Guangzhou from 1998 to 2003 using landsat TM/ ETM data and its economic implications. Geoscience and Remote Sensing Symposium 2005, 4(25-29), 2434-2437.
Yunpeng Wang, Fenglei Fan, et al. 2005. Urban-used land Change (1998-2003) and its Spatial Distribution of Shenzhen, China: Detected by Landsat TM/ETM+ data. Geoscience and Remote Sensing Symposium 2005, 4(25-29), 2339-2342.
Yunpeng Wang, Fenglei Fan, et al. 2004. Urbanization in Pearl River Delta area in past 20 years: remote sensing of impact on water quality. SPIE, 5544,124-134.
[1]邹富宝,付卓,樊风雷等.基于频率比与AHP模型的西藏东部地区滑坡易发性评价[J].自然灾害学报,2023,32(02):235-242 .DOI:10.13577/j.jnd.2023.0225.
[2]凡晚晴,吴华,樊风雷.近20年来西藏地区NPP时空变化及影响因素[J].水土保持通报,2022,42(06):378-386. DOI:10.13961/j.cnki.stbctb.2022.06.045.
[3]伍健恒,孙彩歌,樊风雷.西藏地表温度时空演变特征及影响因子[J].冰川冻土,2022,44(05):1523-1538.
[4]彭婷,孙彩歌,张永东等.广州市中心城区人为热排放景观格局的时空变化[J].华南师范大学学报(自然科学版),2021,53(05):92-102.
[5]钟凯文, 城市不透水面高精度遥感监测与应用. 广东省,广州地理研究所,2021-02-26.
[6]冯珊珊,梁雪映,樊风雷等.基于无人机多光谱数据的农田土壤水分遥感监测[J].华南师范大学学报(自然科学版),2020,52(06):74-81.
[7]梁雪映,冯珊珊,郭颖等.基于无人机的烟草氮元素定量反演与空间差异分析[J].热带地貌,2020,41(02):18-26.
[8]刘畅,孙彩歌,樊风雷.基于多源数据的拉萨旅游空间结构分析[J].地理空间信息,2020,18(08):25-30+6.
[9]王塞,王思诗,樊风雷.基于时间序列分割算法的雅鲁藏布江流域NDVI(1985-2018)变化模式研究[J].生态学报,2020,40(19):6863-6871.
[10]伍健恒,孙彩歌,樊风雷.高原地区城市不透水面与地表温度时空分布研究[J].华南师范大学学报(自然科学版),2020,52(03):92-100.
[11]冯珊珊,樊风雷.Landsat/OLI与夜间灯光数据在提取城市不透水面中的精度差异分析[J].地球信息科学学报,2019,21(10):1608-1618.
[12]梁雪映,樊风雷.基于遥感光谱的作物氮含量估算研究进展[J].中国农业科技导报,2019,21(01):51-61.DOI:10.13304/j.nykjdb.2017.0893.
[13]冯珊珊,樊风雷.基于不透水面的粤港澳大湾区景观格局时空变化[J].应用生态学报,2018,29(09):2907-2914.DOI:10.13287/j.1001-9332.201809.013.
[14]冯珊珊,樊风雷.2006―2016年粤港澳大湾区城市不透水面时空变化与驱动力分析[J].热带地理,2018,38(04):536-545.DOI:10.13284/j.cnki.rddl.003042.
[15]齐婧冰,樊风雷.基于信息熵的山西太谷植被指数最佳分辨率尺度分析[J].广东农业科学,2017,44(01):167-171+193.DOI:10.16768/j.issn.1004-874X.2017.01.025.
[16]陈浩,樊风雷.基于集合卡尔曼滤波的南雄烟草LAI数据同化研究[J].生态学报,2017,37(09):3046-3054.
[17]齐婧冰,樊风雷,郭治兴.基于高光谱分形分析的烟草冠层生长状况监测[J].华南师范大学学报(自然科学版),2016,48(01):94-100.
[18]樊风雷,刘润萍,张佃国.一种改进的城市建筑用地信息提取方法及在广州地区的应用[J].华南师范大学学报(自然科学版),2014,46(04):98-102.
[19]杨静学,黄本胜,欧阳显良等.基于遥感技术的珠三角6类林分的蒸散比研究(英文)[J].Agricultural Science & Technology,2014,15(03):457-462.DOI:10.16175/j.cnki.1009-4229.2014.03.042.
[20]樊风雷,林文枫.城市交通噪声垂直空间分布规律GIS分析[J].测绘与空间地理信息,2013,36(08):4-7.
[21]樊风雷.城市不透水面高光谱遥感监测研究进展[J].云南地理环境研究,2013,25(02):57-64.
[22]樊风雷,邓应彬,樊蔚.基于遥感和GIS的中山市五桂山森林蓄积量时间序列分析[J].广东农业科学,2013,40(04):171-173+238.DOI:10.16768/j.issn.1004-874x.2013.04.063.
[23]杨静学,黄本胜,欧阳显良等.基于遥感技术的珠三角6类林分的蒸散比研究[J].广东农业科学,2013,40(03):125-128+131+237.DOI:10.16768/j.issn.1004-874x.2013.03.064.
[24]熊永柱,樊风雷,朱长柏等.广州市生态系统服务价值时空变化遥感监测[J].广东农业科学,2012,39(15):196-201+237.DOI:10.16768/j.issn.1004-874x.2012.15.017.
[25]樊风雷,邱茂慧.基于归一化植被指数的广州市植被时间变化分析[J].广东农业科学,2012,39(06):1-3+7+4.DOI:10.16768/j.issn.1004-874x.2012.06.003.
[26]樊风雷,陈冰.GIS支持下基于遥感数据珠江广州段污染监测分析[J].三峡环境与生态,2009,2(01):12-16.
[27]樊风雷.基于线性光谱混合模型(LSMM)的两种不同端元值选取方法应用与评价——以广州市为例[J].遥感技术与应用,2008(03):272-277+239-240.
[28]樊风雷,王云鹏.基于遥感数据的珠江三角洲核心区域土地利用时间序列变化分析[J].农业现代化研究,2008(02):223-226.
[29]樊风雷,陈忠暖.GIS支持下珠江三角洲土地利用变化(1980~2003年)遥感监测研究述评[J].云南地理环境研究,2008(01):1-6+12.
[30]樊风雷,王云鹏.基于CA的珠三角核心区城市扩张预测研究[J].计算机工程与应用,2007(36):202-204+245.
[31]樊风雷,孙彩歌.1997—2003年广州市土地利用变化遥感监测研究及动态分析[J].生态科学,2007(06):546-552.
[32]樊风雷,邱茂慧,王云鹏.珠江三角洲经济核心区土地利用遥感监测及其转化机理[J].东华理工学院学报,2007(03):252-256.
[33]邹蒲,王云鹏,王志石等.基于ETM+图像的混合像元线性分解方法在澳门植被信息提取中的应用及效果评价[J].华南师范大学学报(自然科学版),2007(02):131-136.
[34]樊风雷. 珠江三角洲核心区域土地利用时空变化遥感监测及其生态环境效应研究[D].中国科学院研究生院(广州地球化学研究所),2007.
[35]邱茂慧,樊风雷.珠港澳地区11市1995~2004年城市竞争力评价研究[J].华南师范大学学报(自然科学版),2006(04):120-127.
[36]汤世华,樊风雷,王云鹏等.1998~2003年东莞市开发区时空变化的遥感监测及驱动力分析[J].华南师范大学学报(自然科学版),2006(01):114-119.
[37]汤世华,樊风雷,王云鹏等.土地利用变化的遥感监测及其与经济发展关系的研究——以增城市1998-2003土地利用为例[J].农业现代化研究,2005(05):378-381.
[38]樊风雷,王云鹏.基于MapObjects控件的中国矿情地理信息系统及应用——以铜矿地质分布为例[J].热带地理,2004(02):155-158+167.
[39]樊风雷,王云鹏.中国矿物数据库中图像数据最优存储和显示方法的探讨[J].计算机工程与应用,2004(08):170-173+176.